Product Description
Product Description
Features: High efficiency and energy saving, low noise and little vibration. Insulation class: F;Protection class:IP54 or IP55.
General purpose including cutting machines, pumps, fans, conveyors, machines tools of farm duty and food process.
The altitude not exceeding 1000m above sea level. The ambient temperature subject to seasonal variations but no exceeding+40ºC and not less than-15ºC.
Company Profile
ZheJiang Lanyoung Electromechanical Co., Ltd was originated from 1988, established in 2001, it owns ZheJiang Lanyoung Electromechanical Co., Ltd HangZhouShan City Branch and ZHangZhoug HangZhouang Electromechanical Co., Ltd, won the honorary title of “top 10 brands of brand network in 2019” and “excellent demonstration unit of ZHangZhoug focusing on quality and brand-making”. We are a modern company combining mechanical and electrical products research, development, production, sales and service with a long history and rich experience in production. We are experts of water pumps, motors, and fans products, the main products are stainless steel pumps, plastic corrosion-resistant submersible pumps, DC electric pumps, self-priming pump, machine tool cooling pumps, corrosion resistant pumps, sewage pumps, oil-immersed submersible pumps, blowers, medium pressure fan, multi-wing fan and so on, and we also possess practical new-type patent for a mini submersible pump. The above products can be all customized according to customer’s requirement. We have special advantages that is different from other manufacturing companies.
Product Parameters
Type | Power | Pole/Speed | Volt/Frequency | Insulation | Protection | Motor housing | Mount |
kw /HP | |||||||
80M2 | 0.55/0.75 | 6/885rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
90S | 0.75/1 | 6/910rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
90L | 1.1/1.5 | 6/910rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
100L | 1.5/2 | 6/940rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
112M | 2.2/3 | 6/940rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
132S | 3/4 | 6/960rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
132M1 | 4/5.5 | 6/960rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
132M2 | 5.5/7.5 | 6/960rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
160M | 7.5/10 | 6/970rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
160L | 11/15 | 6/970rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
180L | 15/20 | 6/970rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
200L1 | 18.5/25 | 6/980rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
200L2 | 22/30 | 6/980rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
225M | 30/40 | 6/980rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
250M | 37/50 | 6/980rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
280S | 45/60 | 6/985rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
280M | 55/75 | 6/985rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
315S | 75/100 | 6/990rpm | 380V/50HZ | class F | IP55 | Cast Iron | B3 |
Detailed Photos
Packaging & Shipping
Certifications
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Operating Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Samples: |
US$ 29/Piece
1 Piece(Min.Order) | Order Sample Blue
|
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can you provide examples of machinery or equipment that rely on electric motors?
Electric motors are extensively used in various machinery and equipment across different industries. They play a crucial role in converting electrical energy into mechanical energy to power a wide range of applications. Here are some examples of machinery and equipment that heavily rely on electric motors:
- Industrial Machinery: Electric motors are found in numerous industrial machinery and equipment, such as pumps, compressors, fans, conveyors, agitators, mixers, and machine tools. These motors provide the necessary power for moving fluids, gases, and materials, as well as driving mechanical processes in manufacturing, mining, construction, and other industrial applications.
- Electric Vehicles: Electric motors are the primary propulsion system in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They provide the power needed to drive the wheels and propel the vehicle. Electric motors in EVs and HEVs offer high efficiency, instant torque, and regenerative braking capabilities, contributing to the advancement of sustainable transportation.
- Household Appliances: Many household appliances rely on electric motors for their operation. Examples include refrigerators, air conditioners, washing machines, dishwashers, vacuum cleaners, blenders, and electric fans. Electric motors enable the movement, cooling, or mechanical functions in these appliances, enhancing convenience and efficiency in daily household tasks.
- HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for various functions. Motors power the fans in air handling units, circulate air through ducts, and drive compressors in air conditioning and refrigeration systems. Electric motors in HVAC systems contribute to efficient temperature control and air circulation in residential, commercial, and industrial buildings.
- Medical Equipment: Electric motors are essential components in a wide array of medical equipment. Examples include MRI machines, X-ray machines, CT scanners, surgical robots, dental drills, infusion pumps, and patient lifts. These motors enable precise movements, imaging capabilities, and mechanical functions in medical devices, supporting diagnostics, treatment, and patient care.
- Power Tools: Electric motors are commonly used in power tools such as drills, saws, grinders, sanders, and routers. They provide the rotational force and power required for cutting, shaping, drilling, and other tasks. Electric motors in power tools offer portability, ease of use, and consistent performance for both professional and DIY applications.
- Aircraft Systems: Electric motors are increasingly utilized in aircraft systems. They power various components, including landing gear actuation systems, fuel pumps, hydraulic systems, and cabin air circulation systems. Electric motors in aircraft contribute to weight reduction, energy efficiency, and improved reliability compared to traditional hydraulic or pneumatic systems.
These examples represent just a fraction of the machinery and equipment that rely on electric motors. From industrial applications to household appliances and transportation systems, electric motors are integral to modern technology, providing efficient and reliable mechanical power for a wide range of purposes.
How do electric motors contribute to the precision of tasks like robotics?
Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:
- Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
- Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
- Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
- Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
- Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
- Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.
Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.
What industries and applications commonly use electric motors?
Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:
- Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
- Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
- HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
- Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
- Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
- Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
- Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
- Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.
These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.
editor by CX 2024-05-09