Product Description
We,GOGOGO Mechanical&Electrical Co.,Ltd specialize in high quality energy-efficient electric motors. The combination of the best available materials, high quality sheet metal and the right amount of copper in the rotor/stator makes GOGOGO’s electric motors highly energy-efficient.
We design our electric motors to fit and match our customer’s requirements at our production site. The electric motors can be supplemented with a range of options and accessories or modified with a special design to endure any environment.
Electric motors account for a large part of the electricity used. If we look at the world, electric motors account for about 65 percent of the electricity used in industry. To reduce this use of electricity, there are legal requirements regarding the efficiency of electric motors manufactured in the EU, or exported into the EU.
Three-phase, single-speed asynchronous motors are covered by the requirements today. Asynchronous motors are the most common type of motor and account for 90 percent of the electricity consumption of all electric motors in the power range 0.75 – 375 kW.
According to that standard, the energy efficiency classes have the designations IE1, IE2, IE3 and IE4, where IE4 has the highest efficiency.
Revision of the standard
A revision of the standard was decided by the Ecodesign Committee in 2019. The revision was published on October 1, 2019. The following will apply:
For electric motors
From July 1, 2571
2-, 4-, 6- and 8-pole motors from 0.75 – 1000 kW (previously up to 375kW) are included in efficiency class IE3.
Motors within the range 0.12 – 0.75 kW must meet efficiency class IE2.
The previous possibility to replace IE3 motors with an IE2 motor with frequency drive disappears.
From July 1, 2571
For 2-, 4-, 6- and 8-pole motors from 0.12 – 1000 kW, the efficiency class IE2 now also applies to Ex eb certified motors with high safety.
Single phase motors with greater power than 0.12 kW are covered by the corresponding IE2 class.
The higher efficiency class IE4 applies to 2, 4 and 6-pole motors between 75 – 200 kW.
For frequency inverters
From July 1, 2571
For use with electric motors with power from 0.12 – 1000 kW, the frequency inverter must pass efficiency class IE2 specially designed for inverters.
Current requirements according to the Directive
Since 16 June, 2011 it is prohibited to place electric motors below energy efficiency class IE2 on the market, or to put them into service in the EU.
Since January 1, 2015, electric motors within the range 7.5 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if the latter is combined with frequency inverters for speed control. The legal requirement thus provides 2 options.
From January 1, 2017, the requirements were tightened so that all motors 0.75 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if they are combined with frequency inverters.
Exemptions from the current directive
- Operation other than S1 (continuous drive) or S3 (intermittent drive) with a nominal cyclicity factor of 80 percent or lower.
- Made for assembly with frequency inverters (integral motors).
- Electric motors made for use in liquid.
- Electric motors that are fully integrated into a product (e.g. a gear, pump, fan or compressor) where the energy performance is not tested independently of the product.
- Brake motors
Electric motors intended for operation exclusively:
- At altitudes exceeding 4 000 CHINAMFG above sea level.
- If ambient air temperatures exceed 60°C.
- Where maximum operating temperature exceeds 400°C.
- Where ambient air temperatures are less than -30°C for all motors, or less than 0°C for motors with water cooling.
- In explosive atmospheres (as defined in Directive 94/9 / EC 9)
The requirements do not apply to ships or other means of transport that carry goods or persons, since there must be specially designed engines for this purpose. (If the same mobile conveyor belt is used on ships as well as on land, the rules apply).
Also, the requirements do not apply to repair of motors previously placed on the market, or put into service – unless the repair is so extensive that the product will in practice be brand new.
If the motor is to be further exported for use outside Europe, the requirements do not apply.
Some other requirements apply to water-cooled motors
We have our own design and development team, we can provide customers with standard AC electric motors, We can also customize the single phase/three phase motors according to the special needs of customers. Currently our main motor products cover 3 – phase high – efficiency motors,general 3 – phase motors, single phase motors, etc.
The main motor ranges: IE3 / YE3, IE2 / YE2, IE1 / Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
American standard NEMA motors
Russian standard GOST ANP motors
ZheJiang type AEEF motors,YC motors
Why choose us?
Guarantee of our motors:18-24months
General elivery time:15-30days
Price of motors: Most reasonable during your all suppliers
Packing:Strong export cartons/wooden case/plywood cases/pallets
Payment way with your order: T/T,LC,DP,etc
Sample order: Acceptable
Shipment way: Sea ship,Air flight,Express way,Land transfer way.
If you are looking for new better supplier or purchase electric motors, please feel free contact us now.You will get all what you want.
Application: | Industrial |
---|---|
Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What factors should be considered when selecting the right electric motor for a task?
When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:
- Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
- Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
- Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
- Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
- Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
- Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
- Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
- Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.
By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.
Can electric motors be used in renewable energy systems like wind turbines?
Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:
Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:
- Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
- Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
- Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
- Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
- Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.
Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.
Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.
Can you explain the basic principles of electric motor operation?
An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:
- Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
- Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
- Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
- Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
- Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.
In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.
editor by CX 2023-12-01