Product Description
Large Rotation Speed Fan Cooled Single Phase Capacitor Start Induction Electric Motor
Product Description
PRODUCT OVERVIEW
YC series motors are totally enclosed and fan-cooled, and their installation method conforms to the standards of the International Electrotechnical Commission (IEC). The output power of 3HP and below adopts capacitor start, and the output power of 4HP and above adopts capacitor start and operation. This series of motors has the characteristics of small starting current, large starting torque, and large rotation speed. It is used to drive small lathe water pumps. It is especially suitable for family workshops with only single-phase power supply.
Product Parameters
Ambient temperature | -15ºC≤0≤40ºC |
Altitude | Not exceeding 1000m |
Rated voltage | 220V |
Rated frequency | 50Hz,60Hz |
Protection class | IP44, IP54 |
Insulation class | B, F |
Cooling method | ICO141 |
Duty | S1(continuous) |
OVERALL & INSTALLTION DIEMSIONS
TECHNICAL DATA:
Company Profile
ZHangZhouG CHINAMFG PUMP INDUSTRY Co., Ltd is a professional manufacturer and exporter of water pumps with over 15 years and specialized in manufacturing vortex pumps, centrifugal pumps, Jet pumps, sel-priming pumps, submersible pumps, screw pumps, sewage pumps, deep well pumps, oil pumps,. They are widely used for domestic appliance, agriculture irrigation, building construction, water boosting and transportation, waste water disposal etc.
With its sound and rapid growth, CHINAMFG Pump has obtained Certificate of ISO9001: 2000 quality management system, CE certificate and passed the SGS Inspection and BV inspection.
The pumps have been sold and greatly welcomed in the markets of south-east Asia, the Middle East, Africa, East Europe and South America because of its reliable quality and competitive prices.
Professional, Experienced, Trusted, Reliable are FLORANK’s concept and philosophy.
FAQ
Q1:Could I put my own logo on it ?
A:Sure,We accept OEM and ODM .
Q2: What is your sample policy ?
A: We can supply the sample ,but the customers have to pay the shipping cost .
Q3:Could I produce according to the samples?
A:Of course .we can produce by your samples or technical drawing,We can build the molds.
Q4:How long is production time ?
A: Based on the quantities ,sample order 7-15 days,mass order 30-60days .
Q5:What is the standard package ?
A: Carton or wooden box.
Q6:Do you test all your goods before delivery ?
A:Of course,we have 100% test before delivery .
Why Partner With us
Not Your Competitor
We do not compete with our customers on a B2C basis.You won’t find us selling directly on Amazon or anywhere else our customers are.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Constant Speed |
Number of Stator: | Single-Phase |
Function: | Driving, Control |
Casing Protection: | Closed Type |
Number of Poles: | 4 |
Samples: |
US$ 60/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can electric motors be adapted for use in both residential and industrial settings?
Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:
- Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
- Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
- Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
- HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
- Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
- Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
- Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
- Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
- Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
- Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
- Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
- Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
- Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
- Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.
In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.
How do electric motors impact the overall productivity of manufacturing processes?
Electric motors have a significant impact on the overall productivity of manufacturing processes. Their versatility, reliability, and efficiency make them essential components in a wide range of industrial applications. Here’s a detailed explanation of how electric motors contribute to enhancing productivity in manufacturing:
- Mechanization and Automation: Electric motors serve as the primary power source for a vast array of industrial machinery and equipment. By providing mechanical power, electric motors enable mechanization and automation of manufacturing processes. They drive conveyor belts, pumps, compressors, robots, and other machinery, allowing for efficient material handling, assembly, and production operations. The use of electric motors in mechanized and automated systems reduces manual labor, accelerates production rates, and improves overall productivity.
- Precise Control and Repeatable Movements: Electric motors offer precise control over speed, position, and torque, enabling accurate and repeatable movements in manufacturing processes. This precision is crucial for tasks that require consistent and controlled operations, such as precision cutting, drilling, machining, and assembly. Electric motors allow for fine adjustments and control, ensuring that manufacturing operations are performed with high levels of accuracy and repeatability, which ultimately enhances productivity and product quality.
- High Speed and Acceleration: Electric motors are capable of achieving high rotational speeds and rapid acceleration, enabling fast-paced manufacturing processes. Motors with high-speed capabilities are utilized in applications that require quick operations, such as high-speed machining, packaging, and sorting. The ability of electric motors to rapidly accelerate and decelerate facilitates efficient cycle times and overall process throughput, contributing to increased productivity.
- Reliability and Durability: Electric motors are known for their reliability and durability, making them well-suited for demanding manufacturing environments. With proper maintenance, electric motors can operate continuously for extended periods, minimizing downtime due to motor failures. The reliability of electric motors ensures consistent and uninterrupted production, optimizing manufacturing productivity and reducing costly disruptions.
- Energy Efficiency: Electric motors have witnessed significant advancements in energy efficiency, leading to reduced energy consumption in manufacturing processes. Energy-efficient motors convert a higher percentage of electrical input power into useful mechanical output power, resulting in lower energy costs. By utilizing energy-efficient electric motors, manufacturers can achieve cost savings and improve the overall sustainability of their operations. Additionally, energy-efficient motors generate less heat, reducing the need for cooling and improving the overall efficiency of auxiliary systems.
- Integration with Control Systems: Electric motors can be seamlessly integrated with sophisticated control systems and automation technologies. This integration allows for centralized control, monitoring, and optimization of manufacturing processes. Control systems can regulate motor speed, torque, and performance based on real-time data, enabling adaptive and efficient operations. The integration of electric motors with control systems enhances the overall productivity by optimizing process parameters, minimizing errors, and facilitating seamless coordination between different stages of manufacturing.
Electric motors significantly impact the overall productivity of manufacturing processes by enabling mechanization, automation, precise control, high-speed operations, reliability, energy efficiency, and integration with advanced control systems. Their versatility and performance characteristics make them indispensable in a wide range of industries, including automotive, electronics, aerospace, food processing, and more. By harnessing the power of electric motors, manufacturers can streamline operations, improve product quality, increase throughput, and ultimately enhance productivity in their manufacturing processes.
How do electric motors handle variations in load, speed, and torque?
Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:
- Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
- Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
- Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
- Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.
In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.
editor by CX 2024-05-16
China Professional China Single Phase AC Asynchronous Induction Electric Electrical Condenser Fan Motor Ydk-25-6-27 with Hot selling
Product Description
Model NO. | YDK-25-6 | ||
Voltage | 220V | Frequency | 50 Hz |
Output | 25W | Speed | 850±30 r/min |
Shaft diameter | 8mm/0.31inches | Motor diameter | 97mm/3.8inches |
Number of Poles | 6P | Insulation | B |
steering | CCW | Ambient temperature | -30ºC~43ºC |
Warm Tips: We can customize per your request for the Voltage,Frequency,Output,speed, shaft size and shape |
FAQ:
Q1: Are you factory?
A: Yes, we are a professional motor manufacturing factory for 25 years with 80 employees. We have strong product development and production capacities for OEM and ODM. Our main products include fan motor, air-conditioning motors, swimming pool pump motor and etc., which are sold to Europe, North America, Middle East and South Asia.
Q2: What’s your lead time?
A: 15-20 days for buck production. Customized products depends on sampling time.
Q3: What is your MOQ?
A: MOQ depends on different items, which is negotiable.
Q4: May I get samples?
A: You are welcome to order samples that need 10 days to prepare.
Sample charges are as bulk production price.
Express charges shall be freight collect.
Q5: How about your quality control?
A: From raw material to finished products, we have strict and complete IPQC. And advanced test ing machine can assure of qualified products delivered.
Q6: Can you make motors with customize specifications?
A: Yes, we can customize per your request for the voltage, speed, torque,shaft size and shape.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Constant Speed |
Number of Stator: | Single-Phase |
Samples: |
US$ 12.89/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do manufacturers ensure the quality and reliability of electric motors?
Manufacturers employ several measures and quality control processes to ensure the quality and reliability of electric motors. These measures span from design and manufacturing stages to testing and inspections. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of electric motors:
- Robust Design and Engineering: Manufacturers invest significant effort in designing electric motors with robust engineering principles. This involves careful selection of materials, precise calculations, and simulation techniques to ensure optimal performance and durability. Thorough design reviews and analysis are conducted to identify potential issues and optimize the motor’s design for reliability.
- Stringent Manufacturing Processes: Manufacturers adhere to stringent manufacturing processes to maintain consistent quality standards. This includes using advanced manufacturing technologies, automated assembly lines, and precision machining to ensure accurate and reliable motor production. Strict quality control measures are implemented at each stage of manufacturing, including material inspection, component testing, and assembly verification.
- Quality Control and Testing: Comprehensive quality control and testing procedures are implemented to assess the performance and reliability of electric motors. This includes electrical testing to verify motor characteristics such as voltage, current, power consumption, and efficiency. Mechanical testing is conducted to assess factors like torque, vibration, and noise levels. Additionally, endurance tests are performed to evaluate the motor’s performance over extended operating periods.
- Certifications and Compliance: Electric motor manufacturers often obtain certifications and comply with industry standards to ensure quality and reliability. These certifications, such as ISO 9001, IEC standards, and UL certifications, demonstrate that the manufacturer follows recognized quality management systems and meets specific requirements for product safety, performance, and reliability. Compliance with these standards provides assurance to customers regarding the motor’s quality.
- Reliability Testing: Manufacturers conduct extensive reliability testing to assess the motor’s performance under various conditions and stress factors. This may include accelerated life testing, temperature and humidity testing, thermal cycling, and load testing. Reliability testing helps identify potential weaknesses, evaluate the motor’s robustness, and ensure it can withstand real-world operating conditions without compromising performance or reliability.
- Continuous Improvement and Feedback: Manufacturers emphasize continuous improvement by gathering feedback from customers, field testing, and warranty analysis. By monitoring the performance of motors in real-world applications, manufacturers can identify any issues or failure patterns and make necessary design or process improvements. Customer feedback also plays a crucial role in driving improvements and addressing specific requirements.
- Quality Assurance and Documentation: Manufacturers maintain comprehensive documentation throughout the production process to ensure traceability and quality assurance. This includes recording and tracking raw materials, components, manufacturing parameters, inspections, and testing results. Proper documentation allows manufacturers to identify any deviations, track the motor’s history, and enable effective quality control and post-production analysis.
- Supplier Evaluation and Control: Manufacturers carefully evaluate and select reliable suppliers for motor components and materials. Supplier quality control processes are established to ensure that the sourced components meet the required specifications and quality standards. Regular supplier audits, inspections, and quality assessments are conducted to maintain a consistent supply chain and ensure the overall quality and reliability of the motors.
By implementing these measures, manufacturers ensure the quality and reliability of electric motors. Through robust design, stringent manufacturing processes, comprehensive testing, compliance with standards, continuous improvement, and effective quality control, manufacturers strive to deliver electric motors that meet or exceed customer expectations for performance, durability, and reliability.
Can electric motors be used in renewable energy systems like wind turbines?
Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:
Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:
- Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
- Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
- Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
- Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
- Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.
Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.
Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.
What industries and applications commonly use electric motors?
Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:
- Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
- Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
- HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
- Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
- Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
- Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
- Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
- Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.
These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.
editor by CX 2024-05-03
China Hot selling 380/400V/415V/660V Low Voltage Electric Fan Pump AC Electrical/Electric Motor Induction Motor for Sale vacuum pump booster
Product Description
HangZhoustone YE Series Three Phase Electric/Electrical AC Motor
Three Phase Asynchronous motor is the AC motors, the modular for 3 phase motor offers millions of possible drive combinations.
For the high efficiency electric motor, we have YE3, YE4, YE5 series, from 0.75kW to 315kW. For different voltage, frequency and different power, we can do the customized.
Product Description of AC Induction Electric Motor
MOTOR TYPE | Asynchronous motor, YE3, YE4, YE5. |
STRUCTURE | Iron Cast or Aluminum Housing, Customized. |
PROTECTION CLASS | IP54, IP55. |
INSULATION CLASS | Class F. |
VOLTAGE | 380V, 400V, 440V, 660V, Customized. |
FREQUENCY | 50Hz(60Hz Available). |
EFFICIENCY | IE3, IE4, IE5, |
OUTPUT POWER | 0.75kW~315kW. |
PHASE | Three Phase. |
POLE | 2pole, 4pole, 6pole, 8pole, 10pole. |
COOLING METHOD | IC 411/Customized. |
DUTY | S1 (24Hour continuous working). |
AMBIENT TEMPRETURE | -15°C≤ 0 ≤ 40°C. |
ALTITUDE | Not exceeding 1000m above sea level |
MOUNTING TYPE | B3,B5,B35, V1, V3,Customized. |
STHangZhouRD | IEC International Standard, China CCC, ISO 9001, CE. |
PACKAGE | Carton or Wooden Case, well protection, easy loading and delivery. |
APPLICATION | Water Pump, Assembly line, Air Compressor, Packing and Food Machinery, Mill Machinery, fan, and other equipment. |
WARRANTY | 1 year except for the wear parts. |
DELIVERY TIME | 10-30 working days. |
The Product Details of YE Series Electrical/Electric AC Motor
The Application of YE Series Electric/Electrical AC motor
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Operating Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What factors should be considered when selecting the right electric motor for a task?
When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:
- Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
- Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
- Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
- Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
- Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
- Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
- Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
- Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.
By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.
How do electric motors contribute to the precision of tasks like robotics?
Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:
- Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
- Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
- Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
- Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
- Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
- Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.
Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.
Can you explain the basic principles of electric motor operation?
An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:
- Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
- Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
- Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
- Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
- Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.
In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.
editor by CX 2024-04-09
China wholesaler Ys-112-12 (0.75kW) Aluminum Housing 3phase FRP Exhaust Fan Motor Induction Electric Motor with CCC CE Industrial Eiber Reinforced Plastic Exhaust Fan with Great quality
Product Description
YS-112-12 (0.75kW) Aluminum Housing 3Phase FRP Exhaust Fan Motor Induction Electric Motorwith CCC CE Industrial Eiber Reinforced Plastic Exhaust Fan are newly totally designed in conformity with the relevant rules of IEC and it is dedicated to the glass fiber reinforced plastic motor external axial flow fan.
1.Product Introduction
YS-112-12 (0.75kW) Aluminum Housing 3Phase FRP Exhaust Fan Motor Induction Electric Motorwith CCC CE Industrial Eiber Reinforced Plastic Exhaust Fan ensure the motor obtain good performance, low noise, small vibration, safe and stable running. The motor has advantages of exquisite appearance, small dimension, light and simple structure easy maintenance etc. and can be easily maintained. It has low noise with little vibration but at the same time are light weight and of simple structure.
2.Products Parameter
Type | Rated power(KW) | Rated Current(A) | Voltage (V) |
RPM (r/min) |
Efficiency (%) |
Power factor(CosΦ) | Ist/Tn | Tstart/Tn | Tmax/Tn | Fan size | |
YS80-6 | 0.37 | 1.3 | 380 | 895 | 62 | 0.7 | 1.9 | 4.7 | 2.1 | 800*800*400 | |
YS90L-8 | 0.37 | 1.49 | 380 | 660 | 62 | 0.61 | 1.8 | 4 | 1.9 | 850*850*400 | |
YS100L1-10 | 0.55 | 1.92 | 380 | 520 | 65 | 0.62 | 1.8 | 4 | 1.9 | 1060*1060*400 | |
YS100L2-10 | 0.75 | 2.7 | 380 | 520 | 66 | 0.63 | 1.8 | 4 | 1.9 | 1260*1260*400 | |
YS100L3-10 | 1.1 | 3.9 | 380 | 530 | 66 | 0.63 | 1.8 | 4.7 | 1.9 | 1460*1460*400 | |
YS112-12 | 0.75 | 2.8 | 380 | 450 | 64 | 0.61 | 1.9 | 4.7 | 1.9 |
|
3.Product Application
YS-112-12 (0.75kW) Aluminum Housing 3Phase FRP Exhaust Fan Motor Induction Electric Motorwith CCC CE Industrial Eiber Reinforced Plastic Exhaust Fan widely used in industrial and mining enterprises, workshops, warehouses, gymnasiums, theaters, power plants, laboratories, factories, automobile factories, car factories and textile, metallurgy and other places for ventilation.
4.Related Products
5.TAIHCNENG MOTOR FACTORY AND WORKSHOP
6.HIGH-QUALITY MATERIALS
7.SHOWROOM
8.HONORS& CERTIFICATES
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Low Speed |
Number of Stator: | Three-Phase |
Function: | Driving |
Casing Protection: | Closed Type |
Number of Poles: | 12 |
Samples: |
US$ 78/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do electric motors contribute to the efficiency of tasks like transportation?
Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:
- High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
- Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
- Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
- Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
- Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
- Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
- Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
- Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.
Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.
What safety precautions should be followed when working with electric motors?
Working with electric motors requires adherence to specific safety precautions to ensure the well-being of individuals and prevent accidents. Electric motors involve electrical hazards that can cause electric shock, burns, or other injuries if proper safety measures are not followed. Here’s a detailed explanation of the safety precautions that should be followed when working with electric motors:
- Qualified Personnel: It is important to assign work on electric motors to qualified personnel who have the necessary knowledge, training, and experience in electrical systems and motor operation. Qualified electricians or technicians should handle installation, maintenance, and repairs involving electric motors.
- De-Energization and Lockout/Tagout: Before performing any work on electric motors, they should be de-energized, and appropriate lockout/tagout procedures should be followed. This involves isolating the motor from the power source, ensuring that it cannot be energized accidentally. Lockout/tagout procedures help prevent unexpected startup and protect workers from electrical hazards.
- Personal Protective Equipment (PPE): When working with electric motors, appropriate personal protective equipment should be worn. This may include insulated gloves, safety glasses, protective clothing, and footwear with electrical insulation. PPE helps protect against potential electrical shocks, burns, and other physical hazards.
- Inspection and Maintenance: Regular inspection and maintenance of electric motors are essential to identify potential issues or defects that could compromise safety. This includes checking for loose connections, damaged insulation, worn-out components, or overheating. Any defects or abnormalities should be addressed promptly by qualified personnel.
- Proper Grounding: Electric motors should be properly grounded to prevent electrical shock hazards. Grounding ensures that any fault currents are redirected safely to the ground, reducing the risk of electric shock to individuals working on or around the motor.
- Avoiding Wet Conditions: Electric motors should not be operated or worked on in wet or damp conditions unless they are specifically designed for such environments. Water or moisture increases the risk of electrical shock. If working in wet conditions is necessary, appropriate safety measures and equipment, such as waterproof PPE, should be used.
- Safe Electrical Connections: When connecting or disconnecting electric motors, proper electrical connections should be made. This includes ensuring that power is completely switched off, using appropriate tools and techniques for making connections, and tightening electrical terminals securely. Loose or faulty connections can lead to electrical hazards, overheating, or equipment failure.
- Awareness of Capacitors: Some electric motors contain capacitors that store electrical energy even when the motor is de-energized. These capacitors can discharge unexpectedly and cause electric shock. Therefore, it is important to discharge capacitors safely before working on the motor and to be cautious of potential residual energy even after de-energization.
- Training and Knowledge: Individuals working with electric motors should receive proper training and have a good understanding of electrical safety practices and procedures. They should be knowledgeable about the potential hazards associated with electric motors and know how to respond to emergencies, such as electrical shocks or fires.
- Adherence to Regulations and Standards: Safety precautions should align with relevant regulations, codes, and standards specific to electrical work and motor operation. These may include local electrical codes, occupational safety guidelines, and industry-specific standards. Compliance with these regulations helps ensure a safe working environment.
It is crucial to prioritize safety when working with electric motors. Following these safety precautions, along with any additional guidelines provided by equipment manufacturers or local regulations, helps minimize the risk of electrical accidents, injuries, and property damage. Regular training, awareness, and a safety-focused mindset contribute to a safer working environment when dealing with electric motors.
How do electric motors generate motion and mechanical work?
Electric motors generate motion and mechanical work through the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors accomplish this:
- Magnetic Fields: Electric motors consist of a stationary part called the stator and a rotating part called the rotor. The stator contains coils of wire that are supplied with an electric current, creating a magnetic field around them. The rotor, on the other hand, typically has magnets or electromagnets that produce their own magnetic fields.
- Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor creates a rotational force, also known as torque. This torque causes the rotor to start rotating.
- Electromagnetic Induction: In certain types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current (AC) is supplied to the stator, it creates a changing magnetic field. This changing magnetic field induces voltage in the rotor, which leads to the flow of current in the rotor. The current in the rotor produces its own magnetic field, and the interaction between the stator’s magnetic field and the rotor’s magnetic field results in rotation.
- Commutation: In motors that use direct current (DC), such as brushed DC motors, commutation is employed. Commutation is the process of reversing the direction of current in the rotor’s electromagnets as the rotor rotates. This is done using a component called a commutator, which ensures that the magnetic fields of the rotor and the stator are always properly aligned. By periodically reversing the current, the commutator allows for continuous rotation.
- Conversion of Electrical Energy to Mechanical Energy: As the rotor rotates, the mechanical energy is produced. The rotational motion of the rotor is transferred to the motor’s output shaft, which is connected to the load or the device that needs to be driven. The mechanical work is performed as the output shaft drives the load, such as spinning a fan blade, rotating a conveyor belt, or powering a machine.
In summary, electric motors generate motion and mechanical work by utilizing the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. The electric current flowing through the stator’s coils creates a magnetic field that interacts with the magnetic field of the rotor, producing torque and initiating rotation. In some motors, electromagnetic induction is employed, where a changing magnetic field induces voltage and current in the rotor, leading to rotation. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft, enabling the motor to perform mechanical work by driving the load.
editor by CX 2024-04-03
China OEM Mirco Brushless BLDC DC Induction Electric High Speed Power Fan Motor with RoHS CE Single Phase AC Electrical Fan Permanent Magnet DC Motor for Solar Panel vacuum pump distributors
Product Description
Product Description
5730 Brushelss dc motor With Blower
Motor Description:
1.Motor Insulation Resistance DC500(V) 1(SEC)1(mA)MAX
2.Noise <30dB
3.Operating Condition:Ambient -5~60ºC
3.Storage condition:Ambient temperature -10~125ºC,humidity 10-95%
4.Max coil temperature:105ºC
5.Maxo MCU furface temperature 85ºC
6.Life test:15000hours(no load)
7.Working life :10000hours
8.Our motors performance(data) are per customers` requirments.
9.Motor wires are cooper and some could be used aluminium wire to save cost
10.Motors could be used ball bearing and oil bear(Sleeve bearing) both.
11.Stators could be cold steel and silicon steel
12.We can use both one-shot thermal fuse and recoverable thermal fuse
13.Our AC motors are of high efficiency, superior quality, low energy consumption, long life and competitive price.
Product Parameters
Model | Rated Voltage |
Rated Speed |
Rated Current |
Minmum working voltage |
Max Working Voltage |
No Load Speed |
No Load Current |
Weight |
5730 | 24VDC | 4000RPM | 2A | 9VDC | 32DC | 4500RPM | 0.29A | 740g |
Recommend products
Packaging & Shipping
Certifications
Workshop Show
Fine Watt motor focus on offering motor solutions to smart products for home appliance ,like BLDC,Capacitor motor,shaded pole motor,universal motor and mini generator. Our motors are widely used in kitchen,air conditional,Ice chest,washing machine,etc. Customers locate not only in China domestic ,also oversea from Asia to European and Amecica. Our engineer with 20 years experience in motor design and development,win a lot of motor inovation technology award,Our engineer also provide technical support to other big facotry.we believe we always can find the best solution for your product.
FAQ
Company FAQ
(1) Q: What kind motors you can provide?
A:For now,we mainly provide Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
BLDC Motor,Shade Pole Motor,Capacitor Motor, PMDC Motor,Synchronous Motor,etc
(2) Q: Is it possible to visit your factory
A: Sure. We always like to meet our customer face to face,this is better for understanding.But please kindly keep us posted a few days in advance so we can make good arrangement.
(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will be difficult for us to provide, because all of our motors are custom made and no stock available if there is no further needs. If just sample testing before the official order and our MOQ, price and other terms are acceptable, we will provide samples.
(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.
(5)Q: What advantage do you have?
A: For motors, we have quality guarantee, if there is probelm motor after inspection in customer house,we will replace .
For service, we offer 24 hours technical support and barrier-free communication with excellent service people.
Technical service: Except offer actual motor products,we can also offer motor technical supporting seperately to our customer.Our engineers are represent the most advanced techonogy.
Application: | Universal |
---|---|
Operating Speed: | Adjust Speed |
Excitation Mode: | Compound |
Function: | Driving |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Samples: |
US$ 5/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can electric motors be adapted for use in both residential and industrial settings?
Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:
- Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
- Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
- Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
- HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
- Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
- Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
- Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
- Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
- Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
- Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
- Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
- Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
- Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
- Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.
In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.
Are there any emerging trends in electric motor technology, such as smart features?
Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:
- Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
- Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
- Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
- Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
- Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
- Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.
The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.
What is an electric motor and how does it function?
An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:
- Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
- Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
- Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
- Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
- Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
- Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.
In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.
editor by CX 2023-12-15
China wholesaler Hot Sale Explosion Proof Fan Motor Ybf-3-100L2-10 (0.75Kw) 380V 6/8/10/12 Poles High Quality Ybf3 Aluminum Body 3phase AC Induction Electric Motor IP55 vacuum pump and compressor
Product Description
Hot Sale Explosion Proof Fan Motor YBF-3-1-2006 “small and medium-phase asynchronous motor energy efficiency limit value and energy efficiency rating” motor energy efficiency 2, the power rating and mounting dimensions conform to IEC standards and with the YB, YB2 series motors same.
2. Products Parameter
Type | Output KW | Volt(V) | Rated Current(A) | Rated Speed(r/min) | Efficiency(%) | Power Factor(CosΦ) |
380V 50HZ Synchronous Speed 3000r/min(2Poles) | ||||||
YBF3-63M1-2 | 0.18 | 380 | 0.52 | 2720 | 66 | 0.8 |
YBF3-63M2-2 | 0.25 | 380 | 0.69 | 2720 | 68 | 0.81 |
YBF3-71M1-2 | 0.37 | 380 | 0.99 | 2760 | 70 | 0.81 |
YBF3-71M2-2 | 0.55 | 380 | 1.38 | 2760 | 73 | 0.82 |
YBF3-80M1-2 | 0.75 | 660 | 1.02 | 2840 | 77.5 | 0.83 |
YBF3-80M2-2 | 1.1 | 660 | 1.4 | 2840 | 82.8 | 0.83 |
YBF3-90S-2 | 1.5 | 660 | 1.86 | 2850 | 84.1 | 0.84 |
YBF3-90L-2 | 2.2 | 660 | 2.64 | 2850 | 85.6 | 0.85 |
YBF3-100L-2 | 3 | 660 | 3.48 | 2870 | 86.7 | 0.87 |
YBF3-112M-2 | 4 | 380/660 | 7.9/4.6 | 2890 | 87.6 | 0.88 |
YBF3-132S1-2 | 5.5 | 380/660 | 10.7/6.2 | 2900 | 88.6 | 0.88 |
YBF3-132S2-2 | 7.5 | 380/660 | 14.3/8.3 | 2900 | 89.5 | 0.89 |
YBF3-160M1-2 | 11 | 380/660 | 20.7/12 | 2940 | 90.5 | 0.89 |
YBF3-160M2-2 | 15 | 380/660 | 28/16.2 | 2940 | 91.3 | 0.89 |
YBF3-160L-2 | 18.5 | 380/660 | 34.3/19.8 | 2940 | 91.8 | 0.89 |
380V 50HZ Synchronous Speed 1500r/min(4Poles) | ||||||
YBF3-63M1-4 | 0.12 | 380 | 0.44 | 1340 | 58 | 0.72 |
YBF3-63M2-4 | 0.18 | 380 | 0.59 | 1340 | 63 | 0.73 |
YBF3-71M1-4 | 0.25 | 380 | 0.78 | 1350 | 66 | 0.74 |
YBF3-71M2-4 | 0.37 | 380 | 1.08 | 1350 | 69 | 0.75 |
YBF3-80M1-4 | 0.55 | 660 | 0.8 | 1390 | 80.7 | 0.75 |
YBF3-80M2-4 | 0.75 | 660 | 1.06 | 1390 | 82.3 | 0.75 |
YBF3-90S-4 | 1.1 | 660 | 1.53 | 1390 | 83.8 | 0.75 |
YBF3-90L-4 | 1.5 | 660 | 2.06 | 1390 | 85 | 0.75 |
YBF3-100L1-4 | 2.2 | 660 | 2.75 | 1420 | 86.4 | 0.81 |
YBF3-100L2-4 | 3 | 660 | 3.66 | 1420 | 87.4 | 0.82 |
YBF3-112M-4 | 4 | 380/660 | 8.4/4.9 | 1440 | 88.3 | 0.82 |
YBF3-132S-4 | 5.5 | 380/660 | 11.2/6.5 | 1450 | 89.2 | 0.82 |
YBF3-132M-4 | 7.5 | 380/660 | 15.1/8.7 | 1450 | 90.1 | 0.83 |
YBF3-160M-4 | 11 | 380/660 | 21.6/12.5 | 1460 | 91 | 0.85 |
YBF3-160L-4 | 15 | 380/660 | 28.8/16.7 | 1460 | 91.8 | 0.86 |
YBF3-180M-4 | 18.5 | 380/660 | 35.4/20.5 | 1470 | 92.2 | 0.86 |
380V 50HZ Synchronous Speed 1000r/min(6Poles) | ||||||
YBF3-71M1-6 | 0.18 | 380 | 0.67 | 880 | 60 | 0.66 |
YBF3-71M2-6 | 0.25 | 380 | 0.88 | 880 | 63 | 0.68 |
YBF3-80M1-6 | 0.37 | 660 | 0.73 | 890 | 63.3 | 0.7 |
YBF3-80M2-6 | 0.55 | 660 | 0.89 | 890 | 75.4 | 0.72 |
YBF3-90S-6 | 0.75 | 660 | 1.17 | 910 | 77.7 | 0.72 |
YBF3-90L-6 | 1.1 | 660 | 1.65 | 910 | 79.7 | 0.73 |
YBF3-100L-6 | 1.5 | 660 | 2.18 | 930 | 81.5 | 0.74 |
YBF3-112M-6 | 2.2 | 380/660 | 5.4/3.2 | 940 | 83.4 | 0.74 |
YBF3-132S-6 | 3 | 380/660 | 7.3/4.2 | 970 | 84.9 | 0.74 |
YBF3-132M1-6 | 4 | 380/660 | 9.5/5.5 | 970 | 86.1 | 0.74 |
YBF3-132M2-6 | 5.5 | 380/660 | 12.7/7.4 | 970 | 87.4 | 0.75 |
YB3F-160M-6 | 7.5 | 380/660 | 16.4/9.5 | 970 | 89 | 0.78 |
YBF3-160L-6 | 11 | 380/660 | 23.5/13.6 | 970 | 90 | 0.79 |
380V 50HZ Synchronous Speed 1000r/min(6Poles) | ||||||
YBF3-80M1-8 | 0.18 | 660 | 0.5 | 650 | 52 | 0.61 |
YBF3-80M2-8 | 0.25 | 660 | 0.65 | 650 | 55 | 0.61 |
YBF3-90S-8 | 0.37 | 660 | 0.83 | 670 | 63 | 0.62 |
YBF3-90L-8 | 0.55 | 660 | 1.19 | 670 | 64 | 0.63 |
YBF3-100L1-8 | 0.75 | 660 | 1.36 | 690 | 71 | 0.68 |
YBF3-100L2-8 | 1.1 | 660 | 1.91 | 690 | 73 | 0.69 |
YBF3-112M-8 | 1.5 | 380/660 | 4.4/2.5 | 690 | 75 | 0.69 |
YBF3-132S-8 | 2.2 | 380/660 | 5.78/3.34 | 710 | 79 | 0.73 |
YBF3-132M-8 | 3 | 380/660 | 7.69/4.44 | 710 | 81 | 0.73 |
YBF3-160M1-8 | 4 | 380/660 | 9.7/5.6 | 720 | 85.5 | 0.73 |
YBF3-160M2-8 | 5.5 | 380/660 | 13/7.5 | 720 | 85.5 | 0.75 |
YBF3-160L-8 | 7.5 | 380/660 | 16.9/9.8 | 720 | 88.5 | 0.76 |
3. Product Application
Hot Sale Explosion Proof Fan Motor YBF-3-100L2-10 (0.75Kw) 380V 6/8/10/12 Poles High Quality Ybf3 Aluminum Body 3phase AC InductionElectric Motor IP55 can be used in the place where exists explosive gas mixture, such as coal industry, petroleum industry, chemical industry, smelting industry, natural gas industry, grain and oil processing industry, paper industry, pharmaceutical industry and so on.
4. Related Products
5. CHINAMFG Factory &Workshop
6. Certificate
Application: | Industrial |
---|---|
Speed: | Low Speed |
Number of Stator: | Three-Phase |
Function: | Driving |
Casing Protection: | Explosion-Proof Type |
Number of Poles: | 10 |
Samples: |
US$ 125/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How does an electric motor ensure efficient energy conversion?
An electric motor ensures efficient energy conversion by employing various design features and principles that minimize energy losses and maximize the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors achieve efficient energy conversion:
- Efficient Motor Design: Electric motors are designed with careful consideration given to their construction and materials. High-quality magnetic materials, such as laminated iron cores and permanent magnets, are used to reduce magnetic losses and maximize magnetic field strength. Additionally, the motor’s windings are designed with low-resistance conductors to minimize electrical losses. By optimizing the motor’s design, manufacturers can improve its overall efficiency.
- Reducing Friction and Mechanical Losses: Electric motors are designed to minimize friction and mechanical losses. This is achieved through the use of high-quality bearings and lubrication systems that reduce friction between moving parts. By reducing friction, the motor can operate more efficiently, translating more of the input energy into useful mechanical work rather than dissipating it as heat.
- Efficient Control and Power Electronics: Electric motors employ advanced control techniques and power electronics to enhance energy conversion efficiency. Variable frequency drives (VFDs) are commonly used to control motor speed and torque, allowing the motor to operate at optimal efficiency levels under varying load conditions. Power electronics devices, such as insulated gate bipolar transistors (IGBTs) and MOSFETs, minimize switching losses and optimize power flow within the motor.
- Regenerative Braking and Energy Recovery: Some electric motors, particularly those used in hybrid electric vehicles (HEVs) and electric trains, incorporate regenerative braking systems. These systems convert the kinetic energy of the moving vehicle back into electrical energy, which can be stored and reused. By capturing and reusing energy that would otherwise be wasted as heat during braking, regenerative braking significantly improves overall energy efficiency.
- Efficient Cooling and Thermal Management: Electric motors generate heat during operation, and excessive heat can lead to energy losses and reduced efficiency. To mitigate this, motors are designed with efficient cooling systems such as fans, heat sinks, or liquid cooling methods. Proper thermal management ensures that the motor operates within the optimal temperature range, reducing losses and improving overall efficiency.
- High-Efficiency Standards and Regulations: Governments and organizations have established energy efficiency standards and regulations for electric motors. These standards encourage manufacturers to produce motors with higher efficiency ratings. Compliance with these standards ensures that motors meet certain efficiency criteria, resulting in improved energy conversion and reduced energy consumption.
By incorporating these design features, control techniques, and efficiency measures, electric motors achieve efficient energy conversion. They minimize energy losses due to factors such as resistance, friction, and heat dissipation, ensuring that a significant portion of the input electrical energy is converted into useful mechanical work. The continuous advancements in motor design, materials, and control technologies further contribute to improving the overall energy efficiency of electric motors.
What safety precautions should be followed when working with electric motors?
Working with electric motors requires adherence to specific safety precautions to ensure the well-being of individuals and prevent accidents. Electric motors involve electrical hazards that can cause electric shock, burns, or other injuries if proper safety measures are not followed. Here’s a detailed explanation of the safety precautions that should be followed when working with electric motors:
- Qualified Personnel: It is important to assign work on electric motors to qualified personnel who have the necessary knowledge, training, and experience in electrical systems and motor operation. Qualified electricians or technicians should handle installation, maintenance, and repairs involving electric motors.
- De-Energization and Lockout/Tagout: Before performing any work on electric motors, they should be de-energized, and appropriate lockout/tagout procedures should be followed. This involves isolating the motor from the power source, ensuring that it cannot be energized accidentally. Lockout/tagout procedures help prevent unexpected startup and protect workers from electrical hazards.
- Personal Protective Equipment (PPE): When working with electric motors, appropriate personal protective equipment should be worn. This may include insulated gloves, safety glasses, protective clothing, and footwear with electrical insulation. PPE helps protect against potential electrical shocks, burns, and other physical hazards.
- Inspection and Maintenance: Regular inspection and maintenance of electric motors are essential to identify potential issues or defects that could compromise safety. This includes checking for loose connections, damaged insulation, worn-out components, or overheating. Any defects or abnormalities should be addressed promptly by qualified personnel.
- Proper Grounding: Electric motors should be properly grounded to prevent electrical shock hazards. Grounding ensures that any fault currents are redirected safely to the ground, reducing the risk of electric shock to individuals working on or around the motor.
- Avoiding Wet Conditions: Electric motors should not be operated or worked on in wet or damp conditions unless they are specifically designed for such environments. Water or moisture increases the risk of electrical shock. If working in wet conditions is necessary, appropriate safety measures and equipment, such as waterproof PPE, should be used.
- Safe Electrical Connections: When connecting or disconnecting electric motors, proper electrical connections should be made. This includes ensuring that power is completely switched off, using appropriate tools and techniques for making connections, and tightening electrical terminals securely. Loose or faulty connections can lead to electrical hazards, overheating, or equipment failure.
- Awareness of Capacitors: Some electric motors contain capacitors that store electrical energy even when the motor is de-energized. These capacitors can discharge unexpectedly and cause electric shock. Therefore, it is important to discharge capacitors safely before working on the motor and to be cautious of potential residual energy even after de-energization.
- Training and Knowledge: Individuals working with electric motors should receive proper training and have a good understanding of electrical safety practices and procedures. They should be knowledgeable about the potential hazards associated with electric motors and know how to respond to emergencies, such as electrical shocks or fires.
- Adherence to Regulations and Standards: Safety precautions should align with relevant regulations, codes, and standards specific to electrical work and motor operation. These may include local electrical codes, occupational safety guidelines, and industry-specific standards. Compliance with these regulations helps ensure a safe working environment.
It is crucial to prioritize safety when working with electric motors. Following these safety precautions, along with any additional guidelines provided by equipment manufacturers or local regulations, helps minimize the risk of electrical accidents, injuries, and property damage. Regular training, awareness, and a safety-focused mindset contribute to a safer working environment when dealing with electric motors.
How do electric motors handle variations in load, speed, and torque?
Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:
- Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
- Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
- Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
- Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.
In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.
editor by CX 2023-11-18
China high quality High Voltage Motor Three Phase Induction Blower Axial Fan Water Pump Air Compressor Motor vacuum pump connector
Product Description
Product Description
Specifications
YKK 6kv 10kv high voltage squirrel cage large size ac 3 phase asynchronous electric induction HV motor
Box structure desigh
160kw-10000kw
high efficiency,low noise
good quality ,good performance
ISO9001-2008
Feature and usage
YKK high voltage squirrel cage motor(6KV 10KV)
YKK series motor is our company new products instand of the old series JS JSQ.They are Lighter weight, higher efficiency, more energy-saving, lower noise, smaller vibration, higher reliability, longer service life, and easier mounting and maintenance.
Suitable for ventilators, compressors, water pumps, crushers, cutting machine tools and transportation machineries, as well as other machineries, and act as a motive power machine industrial and mining establishments such as mining, machinery, petroleum, and chemical industries as well as the power plant, etc.
the motors are of box-section construction, the frame is welded into box-section using steel plate, and hence the weight of motors is light and rigidity i good. Two sides and top of the frame are all provided with the windows, which ,on the one hand ,is convenient to maintain and take are of motors,and,on the other hand, can mount different coolers on the top of frame, thus being capable of deriving the motors with different methods of cooling and different degrees of protection.
the motors has a laminated core which is first compressed and secured before it is fitted into the frame and then pressed into the machined frame, the motors have good insulating performance, higher mechanical strength, higher moisture-resistance and longer service life.
the squirrel cage rotors are of both cast aluminum construction and copper bar construction. The rotors are manufactured using advanced&relible cast-aluminum and welding process, and are well balanced.therefore,the motors operate smoothly and reliably.
rolling bearing or sleeve bearings are used for the motors, depending on the power and speed of motors. Degree of protection is IP44 or IP54. the rolling bearing are provided with grease-filling and -diaining devices without shutdown.
The main terminal box is located at the right side of the motor, and can also be located at the left side on user request. Interior and exterior of the terminal box all are provided with separate earthing terminals
Motor Performance
Power range:160kw-10000kw
Frame Size:355-1000mm
Rated Voltage: 3KV 6KV 10KV
Speed;3000rpm 1500rpm 1000rpm 750rpm 600rpm
Protection Class: IP44 IP54 IP55
Cooling type;IC611 IC616
Ambient Temperature: -15°C~40°C
Altitude: not exceed 1000 Meter
Rated Frequency: 50Hz/60Hz
Insulation Class: F
Temprature rise: B
Working Duty: S1(Continuous)
Certification To Guarantee We are Good In Quality
Ordering Informations
1.Please indicate the motor type,rated output,rated voltage,rated frequency,synchronous speed,Explosion proof Mark,mounting type,rotation direction(view from the shaft extension side)Use of the environment(indoor or outside)If the user havn’t point out the rotation and environment,normailly we think is CW roration and used indoor.
2.when user have special requirments,For example:Dispose the stator,bearing explosion proof and bearing temperature sensors,space heater,Plateau use,specical frequency,mounting size change,special output,the user must ,order can be confirm after signing the technical agreement with engneering department .
3.The catalogue is only fpr reference,and there may be variations.
4.This range of motor can also be made into Variable-Frequency motors,the range of frequency of which is 0-100HZ,the output and overall dimensions should be confirm separately.
Strong Package Ensure Motor safe enough for Ship or Truck Transportation.
No. | Squirrel cage motor | Y | YKK | YKS | Y2 |
Slip ring motor | YR | YRKK | YRKS | / | |
1 | Structure | Box-type construction, made up of steel plates welded with each other | Compact struction | ||
2 | Cooling method | IC01 or (IC11, IC21, IC31) | IC611 or IC616 | IC81W | IC411 |
3 | Natural ventilation, with top mounted protection cover | With top mounted air-air cooler | With top mounted air-water cooler | ||
4 | Protection type | IP23 | IP44 or IP54 | IP44 or IP54 | IP54 |
5 | Insulation | F | |||
6 | Mounting arrangement | IMB3 | |||
7 | Voltage available | 3kv, 3.3kv; 6kv, 6.6kv; 10kv, 11kv | |||
8 | Frequency available | 50HZ 60HZ 0-100HZ |
Company Profile
Certifications
Production Process
Production application
Packaging & Shipping
Worldwide Marketing Network
After Sales Service
Our company is a reliable and professional motor factory in ZheJiang , China, who has been in this field for years and won high reputation among customers .
factory outlets and always seeking every chance to make every customer enjoy the cooperation with us.
Application: | Universal |
---|---|
Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Function: | Driving |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Customization: |
Available
|
|
---|
What factors should be considered when selecting the right electric motor for a task?
When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:
- Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
- Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
- Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
- Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
- Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
- Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
- Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
- Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.
By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.
What advancements in electric motor technology have improved energy efficiency?
Advancements in electric motor technology have played a crucial role in improving energy efficiency, leading to more sustainable and environmentally friendly applications. Here’s a detailed explanation of some key advancements in electric motor technology that have contributed to enhanced energy efficiency:
- High-Efficiency Motor Designs: One significant advancement in electric motor technology is the development of high-efficiency motor designs. These designs focus on reducing energy losses during motor operation, resulting in improved overall efficiency. High-efficiency motors are engineered with optimized stator and rotor geometries, reduced core losses, and improved magnetic materials. These design enhancements minimize energy wastage and increase the motor’s efficiency, allowing it to convert a higher percentage of electrical input power into useful mechanical output power.
- Premium Efficiency Standards: Another notable advancement is the establishment and adoption of premium efficiency standards for electric motors. These standards, such as the International Electrotechnical Commission (IEC) IE3 and NEMA Premium efficiency standards, set minimum efficiency requirements for motors. Manufacturers strive to meet or exceed these standards by incorporating innovative technologies and design features that enhance energy efficiency. The implementation of premium efficiency standards has led to the widespread availability of more efficient motors in the market, encouraging energy-conscious choices and reducing energy consumption in various applications.
- Variable Speed Drives: Electric motor systems often operate under varying load conditions, and traditional motor designs operate at a fixed speed. However, the development and adoption of variable speed drives (VSDs) have revolutionized motor efficiency. VSDs, such as frequency converters or inverters, allow the motor’s speed to be adjusted according to the load requirements. By operating motors at the optimal speed for each task, VSDs minimize energy losses and significantly improve energy efficiency. This technology is particularly beneficial in applications with variable loads, such as HVAC systems, pumps, and conveyors.
- Improved Motor Control and Control Algorithms: Advanced motor control techniques and algorithms have contributed to improved energy efficiency. These control systems employ sophisticated algorithms to optimize motor performance, including speed control, torque control, and power factor correction. By precisely adjusting motor parameters based on real-time operating conditions, these control systems minimize energy losses and maximize motor efficiency. Additionally, the integration of sensor technology and feedback loops enables closed-loop control, allowing motors to respond dynamically and adaptively to changes in load demand, further enhancing energy efficiency.
- Use of Permanent Magnet Motors: Permanent magnet (PM) motors have gained popularity due to their inherent high energy efficiency. PM motors utilize permanent magnets in the rotor, eliminating the need for rotor windings and reducing rotor losses. This design enables PM motors to achieve higher power densities, improved efficiency, and enhanced performance compared to traditional induction motors. The use of PM motors is particularly prevalent in applications where high efficiency and compact size are critical, such as electric vehicles, appliances, and industrial machinery.
- Integration of Advanced Materials: Advances in materials science have contributed to improved motor efficiency. The utilization of advanced magnetic materials, such as rare-earth magnets, allows for stronger and more efficient magnetic fields, resulting in higher motor efficiency. Additionally, the development of low-loss electrical steel laminations and improved insulation materials reduces core losses and minimizes energy wastage. These advanced materials enhance the overall efficiency of electric motors, making them more energy-efficient and environmentally friendly.
The advancements in electric motor technology, including high-efficiency motor designs, premium efficiency standards, variable speed drives, improved motor control, permanent magnet motors, and advanced materials, have collectively driven significant improvements in energy efficiency. These advancements have led to more efficient motor systems, reduced energy consumption, and increased sustainability across a wide range of applications, including industrial machinery, transportation, HVAC systems, appliances, and renewable energy systems.
What is an electric motor and how does it function?
An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:
- Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
- Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
- Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
- Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
- Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
- Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.
In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.
editor by CX 2023-10-20
China supplier Ys-112-12 (0.75kW) Aluminum Housing 3phase FRP Exhaust Fan Motor Induction Electric Motor with CCC CE Industrial Eiber Reinforced Plastic Exhaust Fan near me factory
Merchandise Description
YS-112-12 (.75kW) Aluminum Housing 3Phase FRP Exhaust Admirer Motor Induction Electric Motorwith CCC CE Industrial Eiber Bolstered Plastic Exhaust Supporter are freshly completely developed in conformity with the related guidelines of IEC and it is devoted to the glass fiber strengthened plastic motor external axial movement enthusiast.
1.Item Introduction
YS-112-12 (.75kW) Aluminum Housing 3Phase FRP Exhaust Enthusiast Motor Induction Electric Motorwith CCC CE Industrial Eiber Reinforced Plastic Exhaust Admirer make certain the motor obtain great functionality, minimal noise, modest vibration, secure and steady managing. The motor has benefits of exquisite look, modest dimension, gentle and straightforward structure easy servicing and so forth. and can be very easily maintained. It has low sounds with small vibration but at the exact same time are mild fat and of straightforward composition.
2.Items Parameter
Variety | Rated electricity(KW) | Rated Existing(A) | Voltage (V) |
RPM (r/min) |
Effectiveness (%) |
Energy aspect(CosΦ) | Ist/Tn | Tstart/Tn | Tmax/Tn | Admirer size | |
YS80-6 | .37 | one.three | 380 | 895 | 62 | .7 | 1.nine | four.7 | two.one | 800*800*400 | |
YS90L-8 | .37 | 1.forty nine | 380 | 660 | 62 | .sixty one | 1.eight | four | 1.nine | 850*850*400 | |
YS100L1-10 | .55 | one.ninety two | 380 | 520 | 65 | .sixty two | 1.8 | four | 1.nine | 1060*1060*400 | |
YS100L2-ten | .seventy five | two.7 | 380 | 520 | 66 | .63 | 1.eight | four | 1.nine | 1260*1260*four hundred | |
YS100L3-10 | one.1 | three.9 | 380 | 530 | 66 | .63 | 1.8 | 4.7 | 1.9 | 1460*1460*four hundred | |
YS112-12 | .75 | two.eight | 380 | 450 | 64 | .61 | one.nine | 4.7 | one.9 |
|
three.Item Software
YS-112-twelve (.75kW) Aluminum Housing 3Phase FRP Exhaust Enthusiast Motor Induction Electrical Motorwith CCC CE Industrial Eiber Strengthened Plastic Exhaust Admirer widely utilised in industrial and mining enterprises, workshops, warehouses, gymnasiums, theaters, energy plants, laboratories, factories, car factories, car factories and textile, metallurgy and other spots for ventilation.
4.Relevant Products
5.TAIHCNENG MOTOR Manufacturing facility AND WORKSHOP
6.Higher-Good quality Supplies
seven.SHOWROOM
8.HONORS& CERTIFICATES
Induction motors, also identified as asynchronous motors, use the electromagnetic induction generated by the magnetic field of the stator to generate present in the rotor, thereby making torque. These motors do not run at a speed in sync with the recent, that’s why the name. They use the phenomenon of electromagnetic induction to transform electrical energy into mechanical power. Induction motor rotors are the most frequent type of AC motor found in pumps, compressors, and other machines of all types.
AC motors and equipment motors contain one-stage motors for single-period AC electrical power and three-section motors for 3-section AC energy. A one-stage motor just demands to be related to a one-stage electrical power source via the included capacitors to run. 3-phase motors do not require capacitors. You just connect the motor directly to the 3-stage AC energy source. Dongfang Electrical delivers a wide assortment of AC motors and gear motors Consistent or variable velocity AC motors are offered with solitary or three-section equipment and electromagnetic braking options